A Model Context Protocol (MCP) server implementation for Verodat, enabling seamless integration of Verodat's data management capabilities with AI systems.
Created 3 months ago
A Model Context Protocol (MCP) server implementation for Verodat, enabling seamless integration of Verodat's data management capabilities with AI systems.
What is A Model Context Protocol (MCP) server implementation for Verodat, enabling seamless integration of Verodat's data management capabilities with AI systems.?
The Verodat MCP Server provides a standardized way for AI models to access and manipulate data in Verodat. It implements the Model Context Protocol specification, providing tools for data consumption, design, and management. The server is organized into three main tool categories: Consume, Design, and Manage, each offering a progressive set of capabilities for data retrieval, dataset creation, and data upload.
Documentation
Verodat MCP Server
Overview
A Model Context Protocol (MCP) server implementation for Verodat, enabling seamless integration of Verodat's data management capabilities with AI systems like Claude Desktop.
Verodat MCP Server
This repository contains a Model Context Protocol (MCP) server implementation for Verodat, allowing AI models to interact with Verodat's data management capabilities through well-defined tools.
Overview
The Verodat MCP Server provides a standardized way for AI models to access and manipulate data in Verodat. It implements the Model Context Protocol specification, providing tools for data consumption, design, and management.
Tool Categories
The server is organized into three main tool categories, each offering a progressive set of capabilities:
1. Consume (8 tools)
The base category focused on data retrieval operations:
get-accounts: Retrieve available accounts
get-workspaces: List workspaces within an account
get-datasets: List datasets in a workspace
get-dataset-output: Retrieve actual data from a dataset
get-dataset-targetfields: Retrieve field definitions for a dataset
get-queries: Retrieve existing AI queries
get-ai-context: Get workspace context and data structure
execute-ai-query: Execute AI-powered queries on datasets
2. Design (9 tools)
Includes all tools from Consume, plus:
create-dataset: Create a new dataset with defined schema
3. Manage (10 tools)
Includes all tools from Design, plus:
upload-dataset-rows: Upload data rows to existing datasets
Prerequisites
Node.js (v18 or higher)
Git
Claude Desktop (for Claude integration)
Verodat account and AI API key
Installation# Quick Start
Installing via Smithery
To install Verodat MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @Verodat/verodat-mcp-server --client claude
Manual Installation
Clone the repository:
git clone https://github.com/Verodat/verodat-mcp-server.git
cd verodat-mcp-server
Install dependencies and build:
npm install
npm run build
Configure Claude Desktop:
Create or modify the config file:
VERODAT_AI_API_KEY: Your Verodat API key for authentication
VERODAT_API_BASE_URL: The base URL for the Verodat API (defaults to "https://verodat.io/api/v3" if not specified)
Tool Usage Guide# Available Commands
The server provides the following MCP commands:
// Account & Workspace Management
get-accounts // List accessible accounts
get-workspaces // List workspaces in an account
get-queries // Retrieve existing AI queries
// Dataset Operations
create-dataset // Create a new dataset
get-datasets // List datasets in a workspace
get-dataset-output // Retrieve dataset records
get-dataset-targetfields // Retrieve dataset targetfields
upload-dataset-rows // Add new data rows to an existing dataset
// AI Operations
get-ai-context // Get workspace AI context
execute-ai-query // Run AI queries on datasets
Selecting the Right Tool Category
For read-only operations: Use the consume.js server configuration
For creating datasets: Use the design.js server configuration
For uploading data: Use the manage.js server configuration
Security Considerations
Authentication is required via API key
Request validation ensures properly formatted data
Development
The codebase is written in TypeScript and organized into:
Tool handlers: Implementation of each tool's functionality
Transport layer: Handles communication with the AI model
Validation: Ensures proper data formats using Zod schemas
Debugging
The MCP server communicates over stdio, which can make debugging challenging. We provide an MCP Inspector tool to help:
npm run inspector
This will provide a URL to access debugging tools in your browser.
Contributing
We welcome contributions! Please feel free to submit a Pull Request.